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Day 2: Summary of Presentations 

•  Introduction, Review of Length/Time Scales 
•  Filtering and Closure Issues 
•  Closures for  Momentum and Energy Transport 
•  RANS/URANS Closures for Turbulent Combustion 
•  LES Closures for Turbulent Combustion 
•  Special Topics: Applications* 

–  Gas Turbines both premixed and liquid fueled 
–  Bluff Bodies 
–  Ramjets/Scramjets/Rockets 

* Some results provided by: Poinsot, Janicka, Fureby, Flohr, 
Oefelein, Hasse  
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Some Goals for these Lectures 

•  Identify practical needs for combustion devices 
•  Identify where CFD can contribute (if at all!) 
•  Identify the critical issues that have to be considered  

–  time and length scales, modeling approach 
•  Identify approaches (RANS, URANS, LES), their use 

and predictive capability to specific test cases 
•  Define numerical and algorithmic issues  

–  Grid generation, boundary conditions 
–  Accuracy, physics and cost 

•  Backup slides provided for additional information 
–  Additional slides provided for completeness 
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Modeling of Turbulent Reacting Flows 

 Inertial Subrange 

Large Eddy Simulation (LES) 

Direct Numerical Simulations (DNS) 

RANS – Current practical CFD 

Dissipation Range Energetic Eddies 

L l 

Range of possible grid 
       cutoff for LES 

η

DROPLET RANGE
Combustion Range 

Increasing Cost 

Very Large Eddy Simulation (VLES) 
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Turbulent Signal and Modeling Strategy 
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Turbulence Modeling Approaches 
•  Direct numerical simulation (DNS) 

–  Transient, 3-D, resolve all fluctuations, no modeling 
•  Moment formulation (RANS/URANS-Models) 

–  Mean, variances, co-variance predicted  
–  Model the complete spectrum 

•  Large-Eddy-Simulation (LES or VLES) 
–  Transient, 3-D, resolve large-scales, model 
‘unresolved’ scale effect on the ‘resolved’ scale 

–  Only ‘energy-containing’ scales resolved in VLES 
–  Energy-containing and inertial scales resolved in LES 

•  Hybrid Schemes: Detached Eddy Simulation, RANS-LES 
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New Combustion System Challenges 

•  Efficient performance at idle (lean) and full-power 
–  Low emission – CO, NO, UHC, Soot, “Noise” 
–  Stable combustion (i.e., without instability/dynamics) 
–  “Fuel-Flexible” robust designs without instability 

•  Very high pressure (> 40 atm) “compact” combustors 
–  High T, Sub-Trans-Super-critical combustion 

•  Some Designs Challenges 
–  Lean blow out (LBO) 
–  Ignition, Extinction/Re-ignition 
–  Combustion instability, flame extinction 
–  Engine un-start (e.g., dual-mode scramjets) 
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Combustion Modeling Relevance 
•  All easy solutions have been reached in practice!! 
•  New designs will operate at the “edge” of combustion limits  
•  Problems (e.g. LBO) avoided at present “by not going 

there” 
•  Future designs will “go there” and operate at the “edge” 
•  Testing and measurements in actual rigs at high pressure 

economically prohibitive and technically very challenging 
•  Need to put modeling and simulations into the design cycle 

–  reduce cost, get better insight into “new” physics 
–  Reliable predictions but how quickly? 
–  Even if done quickly can it be analyzed in time? 
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Some Practical Systems of Interest 

•  Gas Turbine Engines: Premixed and Spray systems 
•  Internal Combustion Engines: Spray systems 
•  Micro-combustors: Premixed and Spray systems 
•  SCRAMJETS: Gaseous (H2) and Liquid (HC) systems 
•  Liquid-Fueled Rocket Motors: LOX-GH2, LOX-LCH4 
•  Solid-Fueled Rocket Motors: Solid phase combustion 
•  Fires: Non-premixed multi-phase systems  
•  Pulse Detonation Engines  
•  Are these diverse systems all that different?  
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Some Practical Realities 
•  Nearly all operational systems have complex geometries 
•  Nearly all systems involve very high Re No flows 

–  Resolution of near walls (?) and shear layers 
–  Highly 3D swirling flow 

•  All real systems: finite-rate kinetics and heat release 
–  Resolution of molecular and turbulent mixing scales 
–  Resolution of finite-rate kinetics effects locally 
–  Modeling of finite-rate kinetics locally 

•  All systems involve some time-dependent interactions 
–  Excursions about the “mean” is critical 
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What is the underlying Theme? 

FUEL-AIR MIXING Is the KEY 
It is an Unsteady Process 

It occurs over a range of time & length scales 
Mixing by Turbulent Eddies 

Mixing by Molecular Diffusion 
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Fuel-Air Mixing 

Turbine inlet temperature profile 
• Mix exhaust gases, remove hot/

cold spots => longer turbine 
lifetime 
• Film cooling optimization 
• Minimize cooling air needs 

Fuel-air mixing 
•  Varies with power, pressure, equivalence ratio, etc. 
•  Use mixing “control” to: 
• Reduce size 
•  Improve off-design performance – high altitude relight 
•  Improve stability - lean blowout 
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Reality of Fuel-Air Mixing 
•  Perfect “mixing” requires a separate premixer 
•  All combustion devices incorporate mixing devices 

–  Swirl is used to enhance mixing in most devices 
•  “Premixed” systems 

–  Mixture need not be perfectly mixed 
–  Equivalence ratio variation: partially premixing 
–  Very lean mixture can occur locally in lean systems 

•  “Non-Premixed” liquid fueled systems 
–  Mixing occurs after liquid vaporization 
–  Spatial and temporal variation in mixing  
–  premixed to non-premixed state of combustion 

•  Partial premixed combustion 
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CFD for Design 
•  Need to carry out many parametric studies 

–  Complex geometry and conditions to be modeled 
–  qualitative agreement & trends of primary concern 

•  quick turn-around of results: 1-2 days per run 
•  Modeling based on RANS and/or empirical models 

–  time-averaged results 
–  inaccuracy in prediction of dynamical properties 

•  Past focus has been on averaged properties 
–  mean temperature, pattern factor, heat flux, etc. 

•  New focus is likely to be on emission, LBO, instability 
–  Unsteady effects 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

CFD for Design 
•  RANS still the cornerstone of research studies 

–  Typically employ commercial codes 
–  Steady state solutions 
–  higher resolution (e.g., 4-20 million grid points) 
–  more advanced models (e.g., flamelet, PDF) 
–  Turnaround on parallel systems – 2-3 weeks 

•  MANY new designs employ unsteady processes to 
enhance and/or control mixing 
–  URANS or LES option is needed 
–  Closure and applicability of models need to be re-

assessed based of simulation goal 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

 Challenge for Power Generation Gas Turbine Engines 

•  Lean-Prevaporized-Premixed system  
–  Low CO and NO emission 
–  Avoid Lean Blowout (LBO)  

•  Combustion signature near LBO 
–  Rapid increase in CO/UHC as 

equivalence ratio decreases 
–  Rapid increase in pressure 

oscillation (in some combustors) 
•  Challenges for CFD 

–  Predict emission over a range of 
equivalence ratio and fuel types 

–  Predict sensitivity to LBO 
–  Predict sensitivity to onset of 

combustion instability 

Current Preferred 

Enormous reduction in 
emission and increase 
in Profits besides being 
Environmentally green! 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

The Computational Spatial-Scale Dilemma!! 

•  Scale of the combustor 
–  10-100 cm 

•  Large “eddies” in real combustors 
–  1-10 cm 

•  Small-scale mixing occurs at  
–  0.1-10 mm 

•  Droplets with distinct “identity”  
–  1-100 microns 

•  Molecular/chemical processes 
–   0.1 – 1 nm 

•  O(8) dynamic range of scales that 
must be resolved accurately 

Heptane 

PAHs (soot precursor) 

CFM56-5B 
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Other Length/Time Scales  
•  Fluid Dynamics in shear layers  

–  Vortex Shedding: f H/U = 0.017; 0.001 – 0.0001 sec 
–  Jet Preferred Mode: f D/U = 0.1-1.0; 0.01-0.001 sec 

•  Acoustic time scales 
–  0.01-0.001 sec (100-1000 Hz in longitudinal modes) 
–  1-10 KHz in azimuthal modes 

•  Flame Scales (Flamelet–Thin-reaction-Broken Zones) 
–  Flame response time scale: 0.01 – 0.001 sec 

•  Acoustics and Flames can interact without turbulence 
–  Acoustically forced laminar flame 

•  Acoustics & Vortices can interact without flame 
–  Acoustically forced turbulent jets 
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Resolution Requirements and Implications 

  

Some Requirements for Realistic (?) Problems 
Human Vision Simulation    100  Teraflops 
Aerodynamic (URANS) Analysis    1  Petaflop 
Laser Optics              10  Petaflops 
Molecular Biology Dynamics          20  Petaflops 
Aerodynamic (URANS) Design    1  Exaflop 
Computational Cosmology              10   Exaflops 
Turbulence in Physics                  100  Exaflops 
Computational Chemistry              1    Zettaflop 
Turbulent Combustion    ??? Source: Business Week, NASA, Energy Dept,  NSF: May 2004 

1+ Petaflop 
Hardware 

2010 

Real Simulation codes 
achieve only 3-15% of 
peak of OEM systems 
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Some Key Issues to Consider 
•  Numerical Algorithm 

–  Compressible or low-Mach number ? 
–  Numerical accuracy O(2-4) or higher? 
–  Numerical dissipation – understand and quantify 
–  Unstructured or Structured Grid ? 
–  Grid resolution and quality 

•  Simulation Algorithm 
–  Closure for momentum and energy transport 
–  Closure for scalar transport and kinetics 
–  Boundary conditions!! 

•  Parallel Efficiency, Scale-up 
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Comments on these Lectures 
•  Simulations by only few researchers are highlighted 

–  There are many others not included 
•  Simulations at Georgia Tech are highlighted more 

–  Due to past experience and availability of data 
•  Other results highlight key issues when carrying out CFD 

of turbulent combustion  
•  Many slides are included for completeness only and may 

not be fully covered 
•  Wherever possible past “experience” of researchers will 

be indicated during the presentations 
–  The “art” of CFD is important to appreciate 
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Example of Grid and Numerical Accuracy 
 Modal Energy Growth in Temporal Mixing Layer 

O(4) FV-DNS comparison with 
Spectral DNS using same 64**3  
grid resolution 

Comparison of numerical  
scheme’s accuracy for 
64**3 and 128**3 grid 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

Impact of Numerical Dissipation in the LES Solver 
Isotropic Turbulence Decay without SGS model  
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Grid Generation using Commercial Software 

Crossflow direction 

inflow 

Grid clustering 
is in the wrong 
direction 

Grid clustering 
Needed in the  
Shear layer 

•  Multi-block unstructured Cartesian grids are needed to satisfy both wall and  
  shear layer resolution requirements  
•  Unstructured solvers can address this but have their own issues 
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Clustering at walls – too high aspect 
Ratio and clustered in region where 
There is no real flow 

Flux of mass and momentum are  
not in the direction of flow!! 
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Physics versus Numerics 
•  Need to distinguish between numerical accuracy and 

physics (model) accuracy, if possible 
•  Numerical scheme and accuracy may be limited by 

availability and the complexity of the problem 
–  Grid resolution for LES needs to be 2-3 order of 

magnitude coarser than an equivalent DNS 
–  Grid resolution for many RANS (and/or URANS) have 

been similar to LES grid resolution (Why?) 
•  However, physics in the model can be improved (?) 

–  Simple models will require very fine grids 
–  Higher order models may need only “coarser” grid 
–  Potential area for further advancements 
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Numerical Issues 
•  Accuracy of the Spatial Scheme 

–  O(2) or higher is the question !! (O(4) is optimal?) 
•  Accuracy at lower resolution with high order scheme 

–  Complex geometry may restrict to O(2) but need to 
ensure space and time accuracy 

–  Scheme’s dissipation must be well understood 
•  Accuracy of the Algorithm 

–  More physics in the model versus cost 
•  Scheme and algorithm can have different errors 

–  Difficult to quantify in real systems 
•  Validate same scheme & algorithm in canonical flows 
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Numerical Issues 

•  Structured or unstructured scheme ? 
•  Grid quality is very important for structured solvers 

–  Stretching should be < 3-5% in high shear regions 
–  Grid generated to resolve complex geometries 

sometime do not capture turbulent physics 
–  Orthogonality of the grid preferred 

•  Explicit dissipation should be avoided if possible 
–  its behavior in canonical flows should be known 

•  Boundary conditions must be carefully implemented 
–  Accuracy should be same as scheme 
–  Inflow-outflow is very important 

•  Parallel implementation is very important 
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LES of Turbulent Flows: Current Trends 

•  Solve the “filtered” Navier-Stokes Equations 
•  Model unresolved terms in terms of resolved variables 

–  similar to RANS closure approach 
•  Simple “eddy viscosity” type subgrid models very 

popular 
–  requires a length and a velocity scale 

•  Grid scale is the length scale 
•  Two approaches to determine the velocity scale 

–  resolved strain-rate and grid scale (Smagorinsky) 
–  subgrid kinetic energy (Schumann) 
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Impact of Filtering on the Turbulent 
Spectrum 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

Filtering in LES: Separate the Scales 

•  Define a filter 
 
 
 € 

˜ f (x, t) ≡ f ( # x ,t)G(x, # x )d # x ∫

€ 

" " f (x, t) = f (x, t)− ˜ f (x, t)

f 

€ 

f (x, t)⇒ f (x) + f '(x,t)
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Examples of filter functions 

Top-hat 

Gaussian 

Note: filter width is larger 
than the scales of scalar 
Mixing and combustion 
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LES Filtering  

€ 

ϕ x,t( )= F x − s( )ϕ s,t( )ds
V
∫∫∫ ϕϕϕ ʹ′+=

* Spatially low-pass filtering (e.g. top-hat filter) 

•  LES filtering is not the same as RANS filtering 
•  impacts accuracy depending on the scheme 

€ 

∂ϕ 
∂xi

≠
∂ϕ
∂xi

or 

€ 

" ϕ ≠ 0

€ 

˜ ϕ =ρϕ /ϕ

€ 

ϕ= ˜ ϕ + # # ϕ 
Favre filtering (density weighted) 
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Low-Mach Number or Compressible 
Formulation ? 

•  Low Mach Number approximation 
–  Eliminate acoustic waves (can be added separately) 
–  Evolution at convective time (>> acoustic time) 

•  May not be feasible if chemical time is very small 
–  Density not a function of pressure (acoustic) 

•  However density changes due to heat release 
•  Large change in time-step can create acoustic wave 

–  Implicit or explicit filtering to eliminate these waves 
•  Pressure solver convergence issues 

–  Most laboratory flames and combustors away from 
unstable limit can be simulated using this approach 

–  Most commercial solvers are low-M methods 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

Low-Mach Number or Compressible 
Formulation ? 

•  Compressible formulation 
–  Acoustic field included naturally 

•  Fully coupled acoustic-vortex-entropy interactions 
–  Thermo-acoustic instability captured naturally 

•  Combustion instability, LBO 
–  Necessary for supersonic flows 
–  Applicable in low-M flow but can be expensive 

•  Need to use pre-conditioner, dual-time stepping 
–  One formulation for all Mach regime possible 
–  Inflow-outflow needs careful treatment to deal with 

waves entering and leaving the domain 
–  Easy to parallelize and scale-up 
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Low Mach Number Equation 

  

€ 

Low Mach number assumption :

p = p0(t) +γM 2 p1(
 x ,t) + O M 3( )

Conservation of Mass
∂ρ
∂t

+
∂ρui

∂xi

= 0

Conservation of Momentum
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∂t
+
∂ρuiu j
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Conservation of Species

∂ρYk

∂t
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∂xi
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* = − ρYkVk,i
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N
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Conservation of Energy
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∂
∂xi

λ
∂T
∂xi

% 

& 
' 

( 

) 
* + h0

k ˙ ϖ k
k =1

N

∑ −
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∑

Ideal gas law
p0 = ρRT
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Thermodynamic Pressure in Zero-M Limit 

•  Non-dimensional form of EOS:  
•  Global thermodynamic pressure p0(t) only due to 

compressibility and heat transfer from the boundaries 

•  Generalization of the divergence-free condition of 
incompressible flow for heat release 

•  The kinematic or dynamic pressure p1 appears in the 
momentum equation  

•  LES form quite similar to compressible equations 
•  Density (Favre) weighted filtering used for all Mach flow 

€ 

p0 = ρ0T0

  

€ 

dp0
dt

= −λp0∇.
 u + γ
PrRe

∇.(λ∇T)
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Other Requirements to Consider 

•  Gallilean invariance of the LES equations (Speziale, 85) 
–  Modeled equation must satisfy this property 

•  Realizability of the modeled subgrid stresses 
(Schumann, 77; Vreman, 94) 
–  Certain properties must be satisfied locally and in time 

•  Commutativity errors 
–  Filtering and gradient operators do not commute 

when the grid is stretched 
•  Truncation and/or roundoff errors 

–  Depends on the scheme 
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Compressible LES Equations 
•  Favre Filtered equations (Equations look same as RANS BUT…) 

–  Conservation of mass 

–  Conservation of momentum 

–  Conservation of energy 

–  Conservation of Species 
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LES Governing Equations 
•  The filtered quantities are now averaged over a cell 

volume, and are in the resolved scales 
•  The subgrid scale (SGS) terms represent the unresolved 

properties in the resolved scales – require closure 
 

Reynolds Stress 

Enthalpy Flux 

Viscous Work 

Convective-Species  
Flux  
Heat Flux 

Species-Diffusive Flux 
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Eddy viscosity models for LES 

•  SGS Stress: 

•  Characteristic length provided by the local grid spacing Δ 
•  Smagorinsky algebraic model for the subgrid stress 
 
•  One-equation model for subgrid kinetic energy (Schumann)  
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Dynamic Germano’s Model 

•  The subgrid stress requires 
modeling (here for incompressible 
flows – density is dropped): 

•  Applying an explicit filter at a test 
scale (greater than the subgrid 
scale) to the velocity field, the sub 
testscale (sts) stress is: 

•  The model used for the subgrid 
stress should be applicable to the 
sub-testscale stress! 

Resolved 

sts - Model 

sgs - Model 

testscale – Resolved 
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Dynamic Smagorinsky Model 
•  Assuming the model coefficient is constant over the 

width of the explicit filter (Germano et al, PoF 1991): 

  
•  Ill-posed subject to numerical instability 
•  Various solutions devised: averaging, Lagrangian, etc. 
•  Otherwise very efficient and no ad hoc model adjustments 

Sagaut: LES for Incompressible Flows 
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Localized Dynamic Kinetic Energy Model 
– LDKM (Kim and Menon, 1995, 1999) 

•  The ill-posed nature of 
the Germano’s dynamic 
formulation comes from 
the difference between 
filtered subgrid and 
subtestscale stresses 

•  Liu et al (JFM, 1994) 
found experimentally in 
high Re jet flows, Lij and 
τij

sgs are similar and 
proposed a model 

•  Model was not 
dissipative enough:   

 

τij
sgs

Lij

From Liu et al (JFM, 1994)   

€ 

τ ij
sgs = CLij
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LDKM Approach 

•  Scale similarity is extended to test filter level and a 
model is assumed for 

•  Does not employ Germano’s identity 

€ 

τ ij
test = ClLij

•  Denominator is well defined at the test filter level and non-zero 
•  Approach is stable and robust without averaging in complex flows 
•  can be used for any model, including Smagorinsky’s model 
•  Model is available in commercial codes (e.g. FLUENT) 
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Localized Dynamic Kinetic Energy Model Predictions 

Decaying Isotropic Turbulence Rotating Isotropic Turbulence 

DSM and LDKM captures real turbulence at high Re accurately even when a 
very coarse grid is employed. LDKM also capture the effect of rotation (i.e., the 
backscatter increase with rotation) accurately (Kim and Menon, 99).  
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Alternate Models for LES 
•  Other models: 

–  Spectral cut-off models 
–  Approximate de-convolution models 
–  Structure function models 
–  Scale similarity models 
–  Second order algebraic models 
–  Reynolds stress transport models 

•  Finally, some models are combinations of previous 
models to combine the strengths of each  
–  Mixed Model combines Smagorinsky (good levels of 

dissipation) and Similarity models (good physical 
representation of the stresses principal direction) 

 

Book: Sagaut: LES for Incompressible Flow 
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Practical Constraints (Numerical) 

•  Even on parallel clusters simulations need to be 
completed in a reasonable time frame 
–  1-2 weeks? 

•  Very few people have access to 1000+ processors with 
high-speed dedicated switches  
–  300+ processors may be more realistic 

•  Grid resolution of 107 points may be reasonable but 108 
points is beyond current access for majority 

•  With finite-rate kinetics even 107 points may be 
questionable (unless kinetics cost is eliminated) 

•  Can we get accurate predictions using 106+ points? 
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•  Wall:  Slip/No-Slip, isothermal/adiabatic 
•  Inflow-Outflow critical for compressible flow 

–  Finite computational region  
–  Incorrect BCs will cause wave reflection 
–  1D Euler equation (Thompson 1987) 
–  Navier-Stokes (Poinsot & Lele 1992, Baum et at. 94) 
–  Characteristic waves @ inflow/outflow 
–  Full viscous equations solved at inflow/outflow 

•  BCs needed for arbitrary directions 
•  Modifications needed for acoustic modeling 

–  Non-reflecting 
–  Absorbing 

Boundary Conditions 
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Boundary conditions for compressible 
Navier-Stokes equations 

•  Boundary conditions (velocity, pressure) with acoustic 
wave motion (impedance, incoming/outgoing) 
–  Accurate control of wave reflections without any addition of 

numerical dissipation 
–  Avoiding non physical coupling between inlet and outlet 

due to propagation of numerical waves (Wiggles …) 
•  Most methods are based on characteristic analysis of the 

Euler equations or Navier-Stokes equations (Engquist & 
Majda,1979, Thomson,1990,  Poinsot & Lele,1992) 
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Navier Stokes Characteristic Boundary 
Conditions (NSCBC)  

•  Navier Stokes apply everywhere including boundaries 
•  Correction of the solution on the boundaries: 

–  On each boundary, incoming waves must be specified 
•  must be modified using the physical boundary 

conditions (Velocity, pressure, mass flow rate …) 
–  Outgoing waves are prescribed from the computed flow 

•  Do not need any corrections  
•  Characteristic analysis of the Navier Stokes 

–  Inlet/outlet are perpendicular to the x1 (flow) direction 
–  Acoustic waves are propagating in the x1 direction 
–  Incoming/outgoing waves are in the derivatives normal to 

the x1 boundary.  
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Identification of the Acoustic terms in 
the Navier-Stokes equations 

€ 

∂ρ
∂t

+ d1 +
∂ρu2

∂x2

+
∂ρu3

∂x3

= 0

∂ρE
∂t

+
1
2

uk
2

k=1

3

∑
% 

& 
' 

( 

) 
* d1 +

d2

γ −1
+ ρu1d3 + ρu2d4 + ρu3d5

+
∂
∂x2

u2 ρes + p( )[ ] +
∂
∂x3

u3 ρes + p( )[ ] =
∂
∂xi

λ
∂T
∂xi

% 

& 
' 

( 

) 
* +

∂uiτ ij
∂xi

+ ˙ ϖ T

∂ρu1

∂t
+ u1d1 + ρd3 +

∂ρu2u1

∂x2

+
∂ρu3u1

∂x3

=
∂τ1 j

∂x j

∂ρu2

∂t
+ u2d1 + ρd4

∂ρu2

∂t
+ u2d1 + ρd4 +

∂ρu2u2

∂x2

+
∂ρu3u2

∂x3

+
∂p
∂x2

=
∂τ 2 j

∂x j

∂ρu3

∂t
+ u3d1 + ρd5 +

∂ρu2u3

∂x2

+
∂ρu3u3

∂x3

+
∂p
∂x3

=
∂τ 3 j

∂x j

∂ρYk
∂t

+Ykd1 + ρd5+k +
∂ρu2Yk
∂x2

+
∂ρu3Yk
∂x3

=
∂Mkj

∂x j

− ˙ ϖ k

€ 

d =

d1
d2
d3
d4
d5
d5+k

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

==

∂ρu1
∂x1

ρc 2
∂u1
∂x1

+ u1
∂p
∂x1

u1
∂u1
∂x1

+
1
ρ
u1
∂p
∂x1

u1
∂u2
∂x1

u1
∂u3
∂x1

u1
∂Yk
∂x1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' ' 



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

Amplitude of the characteristic waves 
•  The di terms contain both incoming and outgoing information 
•  Characteristic analysis of the 1D Euler equations link di  with the 

amplitude of the characteristic waves Li 

•  Each wave is associated with a characteristic velocity:  
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Incoming and outgoing waves 

•  For a subsonic inlet:  
–  4 incoming waves (L2, L3, L4, L5) and 1 outgoing wave (L1) 
–  A model must be applied to compute the incoming characteristic 

waves using the physical boundary values (Velocity, pressure …) 
–  LODI hypothesis (Poinsot & Lele1992): The waves Li are computed 

assuming flow is Locally One Dimensional and Inviscid 

•  Supersonic flow: all incoming or all outgoing waves 
–  All properties can be prescribed 
–  Note: Supersonic boundary layer has a subsonic portion! 
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Reflecting or Non-Reflecting Inflow/Outflow 

•  Use LODI system to impose fixed in/outflow conditions 
•  Reflecting Conditions:  

–  Acoustic waves reflect from computational boundaries 
•  Can be weak or strong reflection 

•  Non-Reflecting Conditions 
–  Acoustic waves leave domain without reflection  

•  Match impedance at the boundary (can be tricky!) 
•  Sponge Outflow Conditions 

–  Damp all pertubations as the outflow is reached 
•  Requires an increased domain size 

•  Advantages and disadvantages of all approaches 

  



AIAA CFD for Combustion Modeling 

Day 2, Lecture 1: Suresh Menon, Georgia Tech 

Comparison of reflecting and non 
reflecting boundary conditions 

•  Interaction between a characteristic inlet and an 
outgoing acoustic wave 

Non-reflecting inflow Reflecting inflow 
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Limitations and Extensions of LODI formulation 

•  If the boundary is not aligned with a Cartesian direction 
–  Generalized coordinate system: one direction is normal to 

the boundary (Moureau et al. 2005) 
•  The LODI formulation assumes that the transverse 

effect are negligible (1D assumption): 
–  Transverse terms included (Yoo et al., 2005, 2007) 

•  3D NSCBC for edge/corners (Lodato, 2008) 
•  Cross-term viscous terms are also included 
•  Extension for reacting flows also developed and employed 

–  Baum et al.  
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Comparison of RANS/LES of Flow past a Bluff Body 

•  Non-reacting flow  
•  LES using “coarse” grid: ~ 750,000 cells 

•  O(2-4) accuracy in application of BCs 
•  LDKM dynamic closure 

•  RANS: Commercial code with standard 2-equation closure 
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Velocity Profiles in the Wake of the Bluff Body 

Mean Axial Mean Normal Mean Re-stress 

•  LES more accurate than RANS (RNG k-e closure) 
•  O(4) more accurate than O(2) for a given resolution 
•  Dynamic O(4) LES somewhat more accurate 
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Turbulent Stress (uv) Profiles 
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Codes Used for Results Discussed  
•  Most of the studies reported here employ in-house codes 

at various research labs 
•  Some studies employ commercial codes as well 

–  FLUENT, OpenFOAM, CFX, STARCD etc. 
•  Important to become aware of code’s strengths and 

limitations before attempting realistic problems 
–  Sometimes a simple test case with well defined 

boundary conditions can be used to verify the 
accuracy and reliability of the solver 

•  Verification and Validation strategy 
•  Uncertainty Quantification 
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Some Definitions of Codes  
•  OpenFOAM 

–  Christer Fureby, FOA 
•  LESLIE3D 

–  Suresh Menon, Georgia Tech 
•  AVBP 

–  Thierry Poinsot, IMF Toulouse, CNRS, France 
•  FLUENT 

–  Peter Flohr, Alstom 
•  SNL-LES 

–  Joe Oefelein, Sandia National Laboratory 
•  CFX 

–  Christian Hasse, BMW 
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LES Code: Fureby (FOA) 

Drikakis D., Fureby C., Grinstein F.F. & Liefendahl M.; 2007, “ILES with Limiting Algorithms”, 
In Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics,  
Eds. Grinstein F.F., Margolin L. & Rider B., Cambridge University Press, p 94. 

Unstructured Finite Volume (FV) discretization 
Reynolds transport theorem 
 
 
 
 
 
 
Semi-Implicit Algorithm: Linear/cubic reconstruction of convective fluxes 
Central difference approximations of inner derivatives in other fluxes 
Crank Nicholson time integration, Co≈0.5 

Fully Explicit algorithm 
Monotone (van-Leer/FCT) reconstruction of convective fluxes 
Central difference approx. for inner derivatives other fluxes 

Modified Equations Analysis (MEA) 
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LES Code (Fureby) Architecture 

Additional Physics 
• Acoustics 
• FSI 

Turbulence 
• LES or ILES 
• Wall modeling 
• SGS modeling 

Complex Chemistry 
• Reduced reaction mech. 
• Turbulence/chemistry interactions 
• Thermal radiation 
• Multi-phase effects 

Numerics 
• Geometry 
• Discretization 
• Reconstruction 
• Solvers 
• AMR 

Software design 
• Platforms 
• Parallelization 
• Comunication 

Visualization 

Software 
Use OpenFoam C++ library 
running on large linux systems 
MPI + gigabit ethernet / infiniband 
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LES Code (LESLIE3D) – Georgia Tech 
•  Fully compressible finite-volume solver, O(2-4) in space, 

O(2) in time, explicit time integration 
•  Eulerian gas -Lagrangian particle (liquid and/or solid) 

solver with full coupling 
•  Capability to do real gas, dense sprays, breakup 
•  Multi-block, structured grid  
•  Hybrid solvers that combines shock capturing (MUSCL + 

HLL) with O(4) central scheme 
–  Shock capturing used only for discontinuities 

•  No explicit artificial dissipation 
•  Dynamic subgrid closures, subgrid mixing models 

–  G-eqn, ATF, Flamelet, LEM, EBU/EDC 
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Scalability of LESLIE3D 

•  107.leslie is a SPEC 2007 MPI Benchmark for ALL OEMs 
•  Achieve 1+ TFLOP on our dual-core cluster (>15% peak!)  
•  Multi-core with GPU optimization underway 
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LES Code AVBP – Poinsot et al. 
• 3D turbulent compressible reactive Navier-Stokes solver [2] 
• Unstructured explicit parallel solver 
• WALE model for sub-grid scale viscosity [3] 
• Euler-Euler monodisperse formulation for two-phase flow [6] 
• Single and multi-step kinetics [4] 
• Dynamic Flame Thickening TFLES [5] 

– Applicable to premixed and non-premixed combustion 

[2] V. Moureau et al., High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, J. Comp. 
Phys., 2005
[3] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient, Flow Turb. and Combustion, 1999
[4] S. Li et al., Chemistry of JP-10 ignition, AIAA Journal, 2001
[5] O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. 
Fluids, 2000
[6] Boileau M., Pascaud S., Riber E., Cuenot B., Gicquel L., Poinsot T. and Cazalens M. Investigation of two-fluid methods for Large Eddy Simulation of spray 
combustion in Gas Turbines. Flow, Turbulence and Combustion, 80(3):291-321, (2008). 

Courtesy T. Poinsot 
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Speed up of AVBP (CNRS, CERFAC): 
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Courtesy T. Poinsot 
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LES code – Oefelein, SNL 

J. C. Oefelein (2006). Large eddy simulation of turbulent combustion processes in 
propulsion and power systems. Progress in Aerospace Sciences, 42: 2-37.

•  Theoretical framework 
–  Compressible conservation equations 
–  Real-fluid equation(s) of state 
–  Multiphase flow, spray  
–  Dynamic SGS modeling 

• Numerical framework 
–  Dual-time stepping integration 
–  Staggered finite-volume differencing (non-dissipative, conservative) 
–  Generalized body-fitted coordinates (adaptive or moving mesh via ALE) 
–  Generalized multi-block connectivity (complex geometry) 
–  Massively-parallel (MPI) 


