Lecture 5 Emission and Low-NOx Combustors

- Emissions: CO, Nox, UHC, Soot
- Modeling requirements vary due to difference in time and length scales, as well as processes
- In general, finite-rate kinetics is needed to predict emission
 - Flamelet approach still uses kinetics!
 - Reduced kinetics successful for heat release and global dynamic many not work for emissions
- Accuracy in PPMs is needed for reliable predictions
- Computational cost for finite-rate!
- Soot physics is relatively unknown

Emission near LBO in DOE-HAT Combustor

DOE-HAT Setup and Conditions

* 185 x 75 x 81 cylindrical grid
* 185 x 24 x 24 inner Cartesian grid
* O(2-4) interpolation
• LES-LEM only in the flame zone

• resolves the flame

* Load balancing to achieve speedup

Simplified approach to predict emissions

• Pollutants (CO, NO, UHC) tracked at the LES level

$$\frac{\partial \overline{\rho} \widetilde{Y}_m}{\partial t} + \frac{\partial}{\partial x_j} \left[\overline{\rho} \widetilde{Y}_m \widetilde{u}_j + \overline{\rho} (D_m + D_T) \frac{\partial \widetilde{Y}_m}{\partial x_j} \right] = \overline{\rho} \widetilde{\dot{w}}$$

- Slow chemistry, reaction rate obtained from CHEMKIN

- G-equation approach used to track flame in LES
 - Heat release in energy equation as a "thin" zone
 - Turbulent flame speed model in the LES G-equation $S_T = S_T(u', S_L), u'$ obtained from LDKM
- LES-LEM approach
 - Global finite-rate kinetics used in the subgrid to obtain laminar flame speed and flame structure
 - Turbulent flame speed actually predicted

CO Prediction

- Three mechanisms modeled
 - CO production at the flame front
 - Treated as a jump discontinuity
 - Rate obtained using CHEMKIN
 - Equilibrium between CO oxidation and CO2 dissociation

$$CO + O_2 \Leftrightarrow CO_2 + O$$

- Forward/backward rates obtained from CHEMKIN
- CO production via UHC oxidation
 - UHC formed due to local flame quenching
 - UHC oxidation to CO modeled as an Arrhenius rate

UHC Prediction

- Local quenching of flame due to stretch effect (Meneveau and Poinsot, 91)
 - Unburnt fuel released on the product side

NO Prediction

- Two mechanisms included
 - Formation at the flame front
 - Obtained from CHEMKIN
 - Formation via the Zeldovich mechanism

 $N_{2} + 0 \Leftrightarrow NO + N$ $N + O_{2} \Leftrightarrow NO + O$ $N_{2} + O_{2} \Leftrightarrow 2NO$

• O and N assumed to be in equilibrium

AIAA CFD for Combustion Modeling LES-G versus LES-LEM Resolution Issues

- Eddies larger than flame thickness resolved in LES-G and LES-LEM
- LES-G barely resolves flame thickness while LES-LEM has around 12 cells within flame
 - heat release implemented in energy equation as a thin-zone
- Eddies of size of flame preheat zone are resolved in LES-LEM
 - Flame broadening effect included in LES-G via a model
- Eddies of size of flame reaction zone are partially resolved in LEM

Emission predictions: UHC (\phi = 0.41)

Flame surface

UHC iso-surface

Contour lines are CO mass fraction

- UHC production localized in region of high shear
 - Outer boundary layer
 - Flame lift-off
 - Combustion in the distributed regime.

- Flame location (orange) and CO mass fraction (contour lines)
 - Low equivalence ratio: long flame and slow CO oxidation
 - High equivalence ratio: short flame and fast CO oxidation
- Day 2, Lecture 5, Suresh Menon, Georgia Tech

UHC oxidation rate is essential to predict CO emission accurately
Day 2, Lecture 5, Suresh Menon, Georgia Tech

CO emission in the DOEHAT Combustor

GLES: Model can be tuned to match data but with no physics LEMLES: No parameter to adjust or control Note: Both simulations employed the same CO emission model

How Soot is Formed?

- Steps in Soot Formation
 - Formation of precursors
 - Particle Inception
 - Surface growth
 - particle agglomeration
 - Particle oxidation
- Range of scales 0.1 10 nm
 - Spatially and temporally varying in the domain

Modeled Soot Related Processes

- Internal processes
 - Nucleation: Soot nuclei inception by acetylene
 - Coagulation: Particles coalesce
 - Surface growth: Mass deposition on particles
 - Agglomeration: Formation of large chain-like structures
 - Oxidation: Destruction by O2 and OH
- External processes
 - Radiation (optically thin model for absorption by soot, CO_2 H₂O gases (Kaplan 1996)
 - Thermophoresis
 - Transport by Brownian diffusion
- Other unknown processes

Radiation Model

- Current Implementation
 - Optically Thin model for absorption by soot and CO₂, H₂O gases (Kaplan 1996)
- More detailed, but relatively efficient FAST Correlatedk approach under study (Dembele and Wen, 2003)
 - Uses 43 spectral bands of variable width for H2O, CO2 and CO instead of many narrow bands
 - 5 point G-L quadrature (instead of 7 or 10 point)
 - Needs more work to check its applicability within LEMMOM

Soot Kinetics - Lindstedt (1994)

Soot nucleation	$C_2H_2 \Rightarrow^n 2C_s + H_2$
Soot surface growth	$C_2H_2 \Longrightarrow 2C_s + H_2$
Soot Oxidation	$C_s + OH \Longrightarrow CO + H$
	$C_s + \frac{1}{2}O_2 \Longrightarrow CO$

• Based on acetylene as a soot precursor

• Suitable for turbulent flames, with low carbon content fuels $(CH_4 - C_2H_4)$

Method of Moment Approach

- The particle size distribution (PSD) is unknown in advance
- For polydisperse particles it is very hard to specify one type of PSD (Friedlander, 2000)
- However, knowing the moments is equivalent to knowing the PSD (Hudson, 1963)
- MOM with Interpolative Closure (MOMIC) developed by Frenklach and Wang used in LEMLES

- El-Asrag et al. (Comb. Flame 2006, 2007)

• Other methods being developed (Pitsch)

LEM-MOM Subgrid Model

Subgrid Combustion Model for Sooting Flame

$$\frac{\partial T}{\partial t} = -\frac{1}{C_p} \sum_{k=1}^{N_s} C_{p,k} Y_k V_k \frac{\partial T}{\partial x} + \frac{1}{\rho C_p} \frac{\partial}{\partial x} \left(\overline{\kappa} \frac{\partial T}{\partial x}\right) - \frac{1}{\rho C_p} \sum_{k=1}^{N_s} h_k \omega_k W_k + q_r + F_{Tstir}$$

$$\frac{\partial Y_k}{\partial t} = -\frac{1}{\rho} \frac{\partial \rho Y_K V_k}{\partial x} + \frac{\omega_k W_k}{\rho} + F_{Kstir} \qquad k = 1, Ns$$

$$\frac{\partial Y_s}{\partial t} = -\frac{1}{\rho} \frac{\partial \rho Y_s (V_s + V_T)}{\partial x} + \frac{\omega_s W_c}{\rho} + F_{Sstir}$$

$$M_r = \sum_{i=1}^{\infty} m_i^r N_i$$

$$\frac{dM_r}{dt} = R_r + G_r + S_r + M_{stir}$$

$$R_r = \text{Nucleation rate}$$

$$S_r = \text{Surface Growth rate}$$

Where M_r is the rth Moment of Particle Size Distribution (PSD) Function

LEM-MOM Subgrid Model

$$\frac{\partial T}{\partial t} = -\frac{1}{C_p} \sum_{k=1}^{N_s} C_{p,k} Y_k V_k \frac{\partial T}{\partial x} + \frac{1}{\rho C_p} \frac{\partial}{\partial x} \left(\overline{\kappa} \frac{\partial T}{\partial x} \right) - \frac{1}{\rho C_p} \sum_{k=1}^{N_s} h_k \omega_k W_k + F_{Tstir} + Rad$$

$$\frac{\partial Y_k}{\partial t} = -\frac{1}{\rho} \frac{\partial \rho Y_K V_k}{\partial x} - \frac{\omega_k W_k}{\rho} + F_{Kstir} \qquad k = 1, Ns$$

$$\frac{\partial Y_s}{\partial t} = -\frac{\omega_s W_c}{\rho} + F_{Kstir}$$

$$M_r = \sum_{i=1}^{\infty} m_i^r N_i$$

$$\frac{\partial M_r}{\partial t} = R_r + G_r + S_r + Ox_r + F_{Mstir}$$

$$\frac{\partial M_r}{\partial t} = R_r + G_r + S_r + Ox_r + F_{Mstir}$$

Where M_r is the rth Moment of Particle Size Distribution Function

Soot Properties From MOM

$$N_{s} = M_{o}$$

$$Y_{s} = \frac{M_{1}}{\rho}$$

$$f_{v} = Y_{s} \frac{\rho}{\rho_{s}}$$

$$d_{p} = \left(\frac{6}{\pi} \frac{M_{1}}{\rho} \frac{1}{M_{o}}\right)^{1/3}$$

$$A_{s} = \pi M_{o} d_{p}^{2}$$

$$\omega_{s} = \left(\frac{M_{1}^{t}}{\rho^{t}} - M_{1}^{t-1}}{\Delta t}\right)^{t+1}$$

N_c **Soot Number Density Soot Mass Fraction** Y_s f_v **Soot Volume Fraction Soot Particle Diameter** dp **Soot Surface Area** A **Source Term for LEM** ω M₀ **Zero Moment of PSD First Moment of PSD** M_1