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Lecture 7 
CFD of Spray Combustion in Gas Turbines 
•  Spray formulation and implementation issues 
•  Dump combustors with swirl 

–  Operational and laboratory combustors 
•  Complex geometry, Multiple injectors coupling 
•  Different numerical strategies by different groups 
•  Different models by same and/or different groups 
•  Acknowledgements 

–  Thierry Poinsot, IMF Toulouse, CNRS, France 
–  Peter Flohr, ALSTOM, Switzerland 
–  Joe Oefelein, Sandia National Laboratory, CA 
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Primary  Break-up 
K-H Instability, 
Cavitation, 
Turbulence 

Secondary B.U  
R-T Instability 

Dilute Regime 

-  Lagrangian model 
-  Eul 2-Fluid model(4) 

Compressible Two-Phase 
Flow with Interface Capturing 

Current LES 
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Spray Modeling Strategies 

•  Eulerian two-fluid approach (e.g. AVBP) 
–  Volume fraction is known but droplet size distribution 

is not explictly available 
–  More cost effective  

•  Lagrangian droplet tracking approach (e.g., SNL, GT) 
–  Each particle or “parcel” is tracked in the Eulerian 

gas phase with two-way coupling 
–  Droplet size distribution can be prescribed 
–  Drag laws for different size particles can be included 
–  More expensive but perhaps more accurate 



AIAA CFD for Combustion Modeling 

Suresh Menon, Georgia Tech 

Dilute Spray: Modelling Assumptions 
•  Spherical droplet 

–  Droplets deform due to motion 
–  Drag correlations are based on spheres of equivalent 

volume, which “takes” this effect into account. 
•  Dilute approximation 

–  Valid if vf/vg < 0.001.  
–  Not usually valid in the near field of injectors where a 

breakup model becomes necessary. 
–  Drag correlations can be justified under this approximation 
–  Particle collision effects areneglected 

•  Pressure at drop location is constant 
•  Coriolis, Basset, Gravity forces etc. are ignored. 

–  ρl/ ρg >> 1 
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Dilute Sprays: Modelling Assumptions 

•  Droplet radius smaller than Kolmogorov scale 
–  Interaction between droplet and gas is dominated by 

laminar fluid dynamics 
–  Heat conduction can be ignored if Bi<0.1 
–  Radiation between drop and surroundings is neglected 

•  Oxidation process neglected in the flow field around drop 
–  Droplet Damkohler number too small for envelope flames, 

wake flames, etc. 
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Gas Phase Equations 
•  Liquid-gas phase coupling through source terms. 

–  where,  
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Filtered Conservation Equations 

Oefelein, J. C. (2006). Large eddy simulation of turbulent combustion processes
in propulsion and power systems. Progress in Aerospace Sciences, 42: 2-37.
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Subgrid-Scale Model for Particle 
Dispersion 

Oefelein, J. C. (2006). Large eddy simulation of turbulent combustion processes
in propulsion and power systems. Progress in Aerospace Sciences, 42: 2-37.

(i)   Instantaneous force induced by particles at 
remote points yp and times τ 

(ii)   Spatially filtered effect of remote exchange 
processes on discrete points x within filter 
volume of influence 

(iii)   Filtered effect of sgs temporal disturbances 
over the integration time-step δτ 

Two-way coupling by evaluating individual 
contributions imposed by each particle 

Explicit filtering of the particulate phase is 
performed using a top-hat filter 

•  Instantaneous particle motion tracked in 
Lagrangian frame as succession of SGS 
eddies traversed 

– Decompositions of the form                
up(x,t) = Up(x,t) + up′′(x,t) 
reconstructed 

– Fluctuations generated 
stochastically assuming isotropic 
and Gaussian 

– Stochastic intervals coincident with 
particle-eddy interaction time 

•  Particles interact with eddies for time 
taken as smaller of eddy lifetime or 
transit time 
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Mass Conservation 

•  Experimental data used for most of these correlations 
•  Effect of turbulence can be considered in the Reynolds number 

through a fluctuation term computed from KSGS 
•  However, other than this there is no difference between LES and 

RANS spray models 
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•  Effect of small scales through subgrid KE and a random number 
factor to compute u”  

•  Drag factor 

•  Particle response time 

Momentum Conservation 
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•  Lv is the latent heat of vaporization, hd  is the heat transfer coefficient 

         

Energy Equation 
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Droplet Time Scales 
•  Modelling physics at the appropriate timescales necessary to 

accurately capture the transient dynamics of droplet 
combustion. 

•  Droplet relaxation time 
 
–  Time required for droplet to reach 63% of the free stream velocity 

•  Droplet lifetime 
 
–  Ensure that droplet size does not become negative within a Lagrangian 

time step 

•  Droplet Heating time scale 

•  Ensures that local mass loading does not create numerical instability  
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Droplet Time Scales 

•  Eddy life and transit time 
–  Drop interacts with the eddy for its life time or the time required to 

traverse the eddy. 
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Algorithm 

injection 

Communicate 
droplet 

properties 

tdrop(1:N)=0 

i=i+1 

i≤N? 

Locate 
particle & Set 

BC 

Calculate gas 
transport and 

thermodynamic  
properties 

r≤radcut
? Evaporate 

Add to 
coupling-

source term 

Interpolate 
gas properties 
at drop i’s cell 

treat(i)≠1? 

Return to 
Eulerian 

solver 

 Clear ghost 
particles and 

“lost” particles 

Calculate liq. 
transport  and 

thermodynamic 
properties 

Compute 
hd,md,du/dt  

∆tspray=min(droplet 
timescale) 

∆tLES≤tdrop(i)
+∆tspray 

 

∆tspray= ∆tLES 
–tdrop(i) 

Itreat(i)=1 

Time integration of 
position,  mass, 

momentum, energy 

Compute 
source terms 
from partial 
vaporization 

Locate 
particle & Set 

BC 

∑itreat
=N? 

i=0 Itreat(i)=1 

Call from 
Eulerian 

solver 
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Implementation and Modeling Issues 
•  Injector exit flow field (spray distribution, velocities etc) 

has to be defined for dilute spray modeling 
•  For breakup – models are needed 

–  Still not fully resolved 
–  All current models are based on RANS studies 
–  K-H instability, TAB model, etc. 

•  Parallel implementation 
–  Gather-scatter 
–  Point-to-point 
–  Advantages and disadvantages of each approach 
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DNS of Particle Laden Mixing Layers 

St = 0.1 St = 1 St = 100 

Top row: Ling et al., JFM 98, Bottom row: Menon, 2005 



AIAA CFD for Combustion Modeling 

Suresh Menon, Georgia Tech 

Comparison of LES and DNS in Particle Laden 
Temporal Mixing Layer 

St =1 St =10 

DNS: 64**3, O(4), LES: 32**3, O(4), Dynamic k-sgs model 
2 Mode Initialization: Fundamental and Subharmonic 
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LES of Partially Premixed Combustion in 
Two-Phase Mixtures 

Lean Methane-air Premixed Mixture with 5-10 (blue-red) 
micron Methanol droplets, Overall Equivalence Ratio of 0.8. 
Grid is 64**3 with 18 LEM cells per LES cell. 

X-Y Plane Y-Z Plane 

Contours of Methane Mass  
Fraction just before the flame 
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Fine-Scale Flame Structure in Partially 
Premixed Two-Phase Mixture 

Triple-Flame Structure in the Flame Zone 
Contours of Reaction Rate (BLACK) and Mixture Fraction (COLOR) 
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Triple-Flame Structure in Two-Phase 
Flame Zone  

Lean Premixed 

Rich Premixed 
Methane Fuel Vapor (LES Filtered) 

Reaction Rate (LES Filtered) 

Methanol Droplets (Log Normal, SMD= 40) 
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Flame Structure around Droplets 

Connected Flame around  
Droplet Clusters 

Disconnected Flame around 
Droplet Clusters 
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Effect of Swirl on Spray Dispersion in a General 
Electric DACRS Gas Turbine Combustor 

Non-Reacting HIGH Swirl Non-Reacting LOW Swirl 

Iso-Surface : Azimuthal Vorticity, Dots: Droplets (40 micron). 

Vortical structures in low swirl flow are more coherent and they modulate 
droplets motion resulting in lower dispersion, mixing and hence, inefficient 
combustion. 

Vorticity Iso @ -15,000 
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LDI Experimental Setup 

Experimental Setup; Cai et al.  Computational Domain 

•  Assembly consists of six 60o helical swirl vaned inlet 
•  Ensuing Swirl number is 1.0; Ro=12.6 mm; UBULK=20 m/s 
•  Butterfly domain of 1.5 M nodes; y+~6 swirler vane walls 

Patel and Menon, 2006, 2008 
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Gas-Phase Inflow Conditions 
•  Through-The-Vane (TTV) simulation performed 

–  Eliminates need to prescribe inflow velocity profiles 
–  Turbulence generation ensues from flow through vanes 

•  Measurements performed at: 
–  Atmospheric pressure, 300 K air, Overall ϕ ~ 0.75 
–  Experimental Jet-A fuel approx as C12H23   
–  ReD ~ 30,759 (based on bulk flow & inlet diameter) 
–  ReΔ ~ 56 (based on κsgs & LES filter width) 

•  Chemistry: 
–  3-step, 7-species, Global reduced mechanism 
–  Arrhenius rates adapted from Westbrook & Dryer for 

first two steps & Malte et al. for NO chemistry 

Patel and Menon, 2006, 2008 
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Liquid-Phase Initial Conditions 

Initial Droplet Distribution Kinetic Energy Spectra 
•  Log-normal droplet size distribution w/ 36.4 mm SMD 

–  Spray data chosen to match near injector data 
•  Droplet cut-off radius ~ 1 mm; Approx. 25,000 parcels 
•  Grid resolution is adequate to recover some inertial range for both 

non-reacting & reacting cases 
Patel and Menon, 2006, 2008 
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Non-Reacting Centerline Axial Velocity 

•  VBB length x/Do ~ 4.3; Recovery velocity ~ 5% of UBULK  
•  Peak negative ~ 60%; Peak Positive ~ 240% of Bulk 
•  Strength & Extent of VBB reasonably predicted by LES 

Patel and Menon, 2006, 2008 
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Non-Reacting Case - VBB 

•  VBB (iso-surface) is a single contiguous region 
•  Corner re-circulation zone (CRZ) noted 
•  Leaf-shaped cross-section for VBB in the center-planes 
•  Strong TKE observed between VBB and venturi walls 

CRZ 

CCW Rotation 

VBB 
Separation 

Patel and Menon, 2006, 2008 
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Non-Reacting Case - Axial 
Comparisons 

•  Radial extent of VBB: r/Ro ~ 1.4 @ x/Ro ~ 1.0 
•  RMS profile peaks indicates shear-layer regions 
•  RMS decays and approaches uniform radial profiles 

, Solid Symbols: Mean 
, Open Symbols: RMS 

Patel and Menon, 2006, 2008 
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Centerline Axial Velocity - Reacting 

•  VBB length x/Do ~ 2.2; Recovery vel ~ 70% of UBULK  
•  Peak negative ~ 160%; Peak Positive ~ 240% of Bulk 
•  Strength & Extent of VBB reasonably predicted by LES 

Patel and Menon, 2006, 2008 
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Reacting Case - VBB 

•  VBB is a single contiguous region albeit smaller 
•  Separation seen at 45o expansion angle, CRZ noted as well 
•  Mean flame surface stabilized by the VBB 

CCW Separation 

VBB 
CRZ 

Flame Iso 

Patel and Menon, 2006, 2008 
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Reacting Case - Axial Comparisons 

, Solid Symbols: Mean 
, Open Symbols: RMS 

•  Radial extent of VBB: r/Ro ~ 1.0 @ x/Ro ~ 1.0 
•  Peak in axial velocity found on outer edges, Wall-jet effect 
•  RMS decays, uniform profile downstream; 30% intensity 

Patel and Menon, 2006, 2008 
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Reacting - Particle Velocity 

•  Particle comparisons for 31-45 µm diameter bin 
•  Particle path seen to form a hollow-cone shape 
•  Positive axial velocity observed in VBB; Good trend noted 

RADIAL AXIAL 

Patel and Menon, 2006, 2008 



AIAA CFD for Combustion Modeling 

Suresh Menon, Georgia Tech 

Reacting Case – Animation [1] 

Patel and Menon, 2006, 2008 
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Reacting Case – Animation [2] 

Patel and Menon, 2006, 2008 
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Reacting Case - Flame Structure 

•  Particle entrainment by the PVC is effective for dispersion 
•  VBB and Flame precessing with PVC motion 
•  Flame index shows presence of premixed & diffusion 

flames 

Premix 

Diffusion 

ϕ=1 

Patel and Menon, 2006, 2008 
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Effect of Spray Break-up Modeling  

Patel and Menon, 2006, 2008 
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Eulerian Gas Phase Dense Modeling 
•  Original E-E DEM approach [1] extended to E-L approach [2] 

to modify gas phase fluxes based on volume fraction loading 

[1] Abgrall and Saurel, J. Comp. Phys., 186, 2003. 
[2] Balakrishnan, Nance and Menon, Shock Waves, 20, 2010. 

Experiment [3] Simulation [2] 

•  M=2.8 shock impact on dense cloud of 300 micron particles 
•  Dense core of particles form after shock impact 
•  Modified Eulerian gas phase fluxes necessary for dense case 

[3] Boiko et al., Shock Waves, 1997 
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CFM56 Experiments* in Georgia Tech 

*Colby, Jagoda and Menon, ASME-GT2006-90974 
Primary: Red, Secondary: Black 
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Swirling Spray Combustion in CFM56 

Counter-swirl 
streaklines 

Temperature 
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9-point LDI at High Pressure 

•  10-45M grid with grid refinement 
•  High pressure 10-27 atm (NASA test rig, Heath et al., 2010) 
•  Kerosene spray with emissions (CO and NO) 
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9-point LDI: Injector-to-Injector 
Interactions 

•  All have same initial swirl but 
downstream interactions change 
mixing and flame structures 

•  Single injector studies cannot 
provide insight into this effect 
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Gas turbines combustion studies:  
single sector vs full chamber ? 

•  “Real life”: multi sector (10 to 24) combustion chambers 
•  Labs: most studies (CFD or experiment) addressing 

combustion issues are limited to single burners 

Courtesy T. Poinsot 
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Gas turbines specific mechanisms: 

•  Certain phenomena found in real gas turbines 
require LES of full combustion chambers: 
– Ignition 

–  Azimuthal modes 

Can LES of a full chamber be performed ?

Courtesy T. Poinsot 
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LES of an ignition sequence 
•  A gas turbine demonstrator: 18 airblast swirled injectors + 2 

ignition devices similar to jets injecting hot burnt gases 

Burnt gas 

Burnt gas 

Courtesy T. Poinsot 
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Ignitors

Courtesy T. Poinsot 
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LES of an ignition sequence 
• Numerics: 

–  AVBP LES code: 3D turbulent compressible reactive Navier-Stokes solver 
[2], 2000 processors BG/L 

• Chemistry, two-phase flow and flame /turbulence interaction models: 
– WALE model for sub-grid scale viscosity [3] 
–  Euler-Euler monodisperse formulation for two-phase flow [6] 
–  19 million tetrahedral cells 
–  JP10 1-step mechanism (surrogate for kerosene) [4] 
– Dynamic Flame Thickening TFLES [5]. F goes up to 20. 

[2] V. Moureau et al., High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, J. Comp. 
Phys., 2005
[3] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient, Flow Turb. and Combustion, 1999
[4] S. Li et al., Chemistry of JP-10 ignition, AIAA Journal, 2001
[5] O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. 
Fluids, 2000
[6] Boileau M., Pascaud S., Riber E., Cuenot B., Gicquel L., Poinsot T. and Cazalens M. Investigation of two-fluid methods for Large Eddy Simulation of spray 
combustion in Gas Turbines. Flow, Turbulence and Combustion, 80(3):291-321, (2008). 

Courtesy T. Poinsot 
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LES of an ignition sequence 
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