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Large-eddy simulations (LES) of turbulent flames
with detailed finite-rate kinetics is currently computa-
tionally infeasible due to the enormous cost associated
with computation of reaction kinetics. Recently, an
In-Situ Adaptive Tabulation (ISAT) methodology was
shown to reduce the cost of direct integration consider-
ably. However, ISAT tables require significant on-line
storage in memory and may result in restriction on
massivelly parallel systems. Furthermore, application
of ISAT in LES requires re-evaluation of the tree struc-
ture and the access/retrieval process. Here, issues re-
garding the use of ISAT in a LES are discussed. Then,
a storage-efficient Artificial Neural Network (ANN) is
trained using ISAT data and used to simulate turbu-
lent premixed flames in both the thin-reaction-zone
and flamelet regimes. Finally, the issues to be ad-
dressed in order to apply this combined ISAT/ANN
methodology for full-scale LES of reacting flows are
discussed.

1 Introduction
Recent more stringent emission regulations have

pushed for the development of more efficient and low-
NOX gas turbine systems. Accurate prediction of
mixing and combustion processes, including pollutant
emission in such systems requires a comprehensive nu-
merical model that can predict flame structure and
propagation characteristics, formation of both major
and minor chemical species, and ignition/extinction
phenomena over a wide range of flow conditions in high
Reynolds numbers. Direct numerical simulations are
not practical, since the resolution and computational
resource requirement far exceed the present and near
future computational capabilities. On the other hand,
steady state methods are not acceptable, since they
only predict mean motion and properties of the flow
using a global averaging approach, and therefore, are
unable to capture the unsteady dynamics.

An approach that can address both the unsteady
dynamics of the flow and the turbulence-chemistry in-
teractions accurately is the method developed recently
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that combines conventional LES for the momentum
transport with a subgrid simulation model to capture
the local reaction-diffusion processes.1"7 In particular,
the key features of this subgrid model is that both re-
action kinetics and molecular diffusion processes are
implemented exactly as in a local direct simulation.
In addition, since the advection of the subgrid fields is
carried out using a Lagrangian transport model, the
transport of the subgrid scalar fields across LES cells
is accomplished without requiring conventional differ-
encing, and as a result, both co- and counter-gradient
diffusion process at the resolved scales are captured
without requiring ad hoc models. Further details of
this subgrid combustion modeling approach is given
elsewhere in the above cited papers.

In order to predict flame extinction/reignition and
pollutant formation, detailed reactions kinetics have
to be simulated within the LES model. This can
be computationally prohibitive due to the cost of di-
rect integration of the chemical kinetics. Methods
developed in the past using the mixture fraction and
the G-equation model are limited by the inherent as-
sumptions in these types of formulations (e.g., equal
diffusivity, two-feed systems, etc). Furthermore, for
practical gas turbine engines where both pilot and sec-
ondary flame zones are employed (for both stability
and efficiency), the mixture fraction approach is inap-
plicable due to the formation of multiple premixed,
partially-premixed and non-premixed zones. Thus,
LES of chemical kinetics in realistic combustors will
require a new approach that is not only computation-
ally efficient but also accurate.

Earlier simulations using the subgrid model have al-
ready shown good results in the flamelet regime when
coupled to a G-equation model1'2'8 or on a single
step mechanism.4'9 LEM calculations with finite-rate
chemistry implemented with ISAT have proven to cap-
ture reasonably well the physics for different regimes
of premixed combustion.10 However, ISAT requires
significant storage (in memory) that increases with
the number of species and the chemical composition
space. Since all LES have to be carried out on massiv-
elly parallel systems (including PC clusters), the local
memory overhead of ISAT can become a bottleneck
when used for large-scale simulations. Therefore, an
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Fig. 1 Diagram of turbulent premixed combustion
regimes.

alternate method based on artificial neural networks
(ANN) for the prediction of the evolution of the scalars
in the fluid flow is investigated and demonstrated in
the present effort. Earlier, Haykin11 noted that ANN
is a massively parallel distributed processor made up
of simple processing units, which has a natural propen-
sity for storing "experience" knowledge and making it
available for use. The present study exploits this abil-
ity to study reacting flows with finite-rate kinetics.

The use of ANN is widespread in the engineering
community, but is relatively novel in combustion re-
lated CFD applications. Some of the past work worth
mentioning12'14 and more recently15 all addressed the
ability of ANN to accurately map the composition
space. In the present work, the ANN approach is
used to simulate a turbulent premixed flame with a
19-species, 15-steps methane-air mechanism.16 The
temporal evolution of any reactive scalar is given in
the form

(1)

The energy equation can also be written in a simi-
lar fashion for the temporal variation of temperature in
the system. A stand-alone Linear Eddy model (LEM)
developed earlier10 is used for ANN training and sim-
ulations. The current effort focusses on the ability of
"off-line trained" ANN (as opposed to an "on-line"
ISAT or DI) to capture the details of the chemical
composition in a high-Re turbulent flame. In par-
ticular, the ability to build ANNs that cover a wide
range of premixed flame characteristics as in the thin-
reaction-zone and corrugated flamelet regime (Fig. 1)
is investigated here. Future extensions to deal with
parametrization of the thermo-chemical and turbulent
parameters within the ANN approach are also dis-
cussed.

2 In Situ Adaptive Tabulation for
LES

The chemical reaction terms appear in closed form
in the LEM equations. Employing operator splitting
for diffusion and reaction terms, the latter are simu-
lated by solving a stiff system of ODE's (Equation 1).
Direct integration of such equations is prohibitively ex-
pensive, and would make LES-LEM simulations with
finite rate chemistry unfeasible. Some approaches17

resort to pre-calculation and tabulation of the thermo-
chemistry. These tables store information about the
thermochemical variables as a mapping from initial to
final conditions in the integration of the stiff ODE's.
However, there are some problems with the complexity
of the interpolation, and most of all, storage require-
ments increase as the dimension of the problem grows.
A relatively new tecnique called In Situ Adaptive Tab-
ulation (ISAT)18 has proven more efficient.

In ISAT, only the accessed region of the composi-
tion space is tabulated instead of the whole realizable
region, i.e., only where the reactive flow computations
occur. As ISAT builds its table only for the accessed
region, the overall time required to build, retrieve and
store information reduces significantly. Also, this tab-
ulation can be done as the flow simulation proceeds,
instead of earlier.

The new ISAT algorithm follows for most part the
original algorithm by Pope.18 Reactive flow calcula-
tions provide the ISAT code with the time step 6t, a
set of initial thermochemical parameters and variables
to be updated. This initial chemical state is called
"query composition". A closest neighbor search is per-
formed in the table to determine which of its points
best matches such initial chemical state. The data
structure employed for the table is of paramount im-
portance for the success of such search, especially for
LES.

The data structure used in the original ISAT code is
a multidimensional binary tree that divides the com-
position space with hyperplanes. A query performs a
search from top to bottom of the tree moving down its
branches to the left or right of its nodes according to
which side of the hyperplane it is located. At the bot-
tom it reaches a record called "leaf", that is used for
the retrieval operation, where the integrated solution
is approximated and its accuracy assessed. This cou-
pled data structure and search algorithm have shown
some limitations, as only a single branch of the tree
is searched and at times the closest neighbor search
fails. This often leads to unnecessary extra direct
integrations, as a new leaf is created each time the
approximated solution is not found accurate enough,
and also to some problems with memory requirements,
as the size of the table increases.

In the new algorithm a more traditional k-d tree
data structure19 is employed where the hyperplanes
that divide the region are held perpendicular to the
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composition space. Nodes (and corresponding hyper-
planes) in the tree are found by determining which of
the coordinates among the records produces the largest
(scaled) variance, allowing also the possibility of tree
balancing and logarithmic search time. The search
for the closest neighbor is also improved allowing the
IS AT code to estimate all the branches that need to be
viewed. This allows 100% rate of success in the search,
and has shown to produce smaller tables. In simula-
tions of Fl flame with a stand alone LEM code, it has
produced tables as small as 25% of the size of tables
from the original ISAT, given the same accuracy.

Also, a new feature has been added to allow the
mapping from the initial state to average reaction
rates, rather than the final state. This is especially
important when very small time steps are taken, as
changes in the chemical compositions can be smaller
than the imposed accuracy. For incompressible time-
accurate simulations, this is generally not an issue,
with time steps hardly smaller than 10~5 sec. Also,
for RANS applications, the time step is usually chosen
for stability and not for time-accuracy and therefore,
this is not an issue. However, for compressible LES
studies (which are needed for real gas turbine flows
where acoustic-vortex-flame interactions axe critical,
and have to be resolved), the time step is typically of
the order of 10~7-10~8 sec.

The use of ISAT in compressible flows produces an-
other unwanted problem, which is the creation of very
large tables, as compared to incompressible flow cal-
culations. This is inevitable, as transients are more
finely reproduced, increasing the size of the accessed
region of the composition space, especially when dif-
ferential diffusion is accounted for. The speed-up
from ISAT is also decreased, since for smaller time
steps, the computational time for the integration of the
ODE's decreases, while the table size and therefore,
the searching time increases. Fl flame simulations
with a stand alone LEM code showed speed-up up to
no more than 60, with a time step of 6 x 10~8 sec, based
on diffusion, fope reported speed-up up to 1000 for
well stirred reactor simulations with time steps of the
order of 10~4.18 However the new ISAT mitigates such
problem by keeping the table from overgrowing.

3 Artificial Neural Network for LES
An ANN structure consists of large interconnected

non-linear processing elements, which by definition,
mimics the functioning of biological neurons possessed
with the ability to learn from the set of input-output
parameter space it is subjected to, and then, predict
the outcome for any new input set with a sufficient
level of accuracy. The information for the network is
stored in the form of weights and biases, which are
computed iteratively in the learning phase of the net-
work training.

Figure 2 shows the structure of a basic three layer

neural network that has been used for most of the
current work. The basic steps for obtaining an ANN
structure are (i) the generation of an initial dataset for
training the network, (ii) the training of the network
using a suitable neural net algorithm, (iii) the genera-
tion of a validation data set to check the accuracy of
the final ANN for sample points not used in the train-
ing, and (iv) the incorporation of the ANN in a real
turbulent flame simulation.

ANNs are constructed to predict the temporal evo-
lution of the reactive scalars and temperature in the
ID LEM domain. The aim is to predict the species
mass fractions and the temperature after a given time
step, and for a given input species composition and
temperature. The time step for the calculation of the
chemical evolution is kept constant in the current sim-
ulations and varies in the range ~10~7 - 10~~8 sec for
the Bl and Fl flame, respectively (see Fig. 1).

Individual ANNs, as shown in Fig. 2, are con-
structed for each of the target 19 species mass fractions
and temperature. Each of the ANN, however, takes
all the 20 scalars as an input. This allows for a higher
accommodation of the intrinsic non-linearities of the
problem. Each ANN is a three-layer scaled conjugate
gradient (SCG) back-propagation network,20 with 20
neurons in each of the hidden layers. The choice of
the number of layers and number of neurons in each
layer is an open question, and has been optimized it-
eratively. The SCG algorithm used has proven to be
quite robust and faster than the conventional ANN
algorithms used elsewhere.14 Tan-sigmoid activation
functions are used for the hidden layers, and a purely
linear activation function for the output layer is em-
ployed. The most challenging task in the creation of
a neural network for a chemical system is the gener-
ation of the training set, which should represent the
accessed composition domain faithfully. The present
study, uses the aforementioned ISAT table as a train-
ing data-set. However, it is still not clear if this is
the optimal solution. On the other hand, use of the
ISAT data reduce the cost of on-line evaluation of the
chemical composition.

Two successive linear transformations are performed
on the input-output data-set, namely (i) standardizing
the variable values to achieve zero mean and unity
variance,

Xj - Xj (2)

where Xi is the value of the input/output variable i
(species mass fraction or Temperature) and x< and ax.
are the mean and variance of the same, respectively.
x\ is the standardized value of the variable Xj, and (ii)
rearranging the input/output sets to fall in the [-1,1]
interval. The normalized [-1,1] range has been proven
to be an optimized range for the ANN training. Thus,
a linear transformation has been applied to the initial
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Fig. 2 A three layer neural network structure.

data-set so as to allow it to fall in the above mentioned
range.

4 Results and Discussion
The simulation model used to study premixed flames

in the thin-reaction-zone and flamelet regimes10 is used
here to evaluate the performance of the new ISAT
model and the ANN approach. The ANN structure
is obtained after training is substituted for the cal-
culation of the chemistry part, to predict the scalar
evolution. Figure 3 shows some of the ANN predic-
tions for the normalized scalars. As mentioned before,
the SCG training algorithm provides excellent agree-
ment for the predictions and these results confirm the
accuracy of the training model.

However, the key issue for LES is the incorpora-
tion of these off-line trained ANN into the real flame
simulation where other un-specified parameters/effects
(e.g., flow, turbulent stirring,etc.) are also prevalent.
As a result, the ANN training on a pure thermo-
chemical composition space may not be sufficient to
capture the overall dynamics of a turbulent flame.
This issue is further complicated by the fact that the
chemical mechanism consists of 19 species and the
associated scalar evolution (Equation 1) is a highly
non-linear problem. The overall data set used in the
present work is highly skewed with a high probability
of a particular target value for the scalars. This can
viewed in the probability distribution function (Fig. 4)
for one of the output scalars in the accessed domain of
the flame region considered. In this figure, the x-axis
denotes the instantaneous reaction rate for the scalar.

Of course, the nature of the curve depends on other
parameters, including the simulation time and the size
of the intervals for constructing the PDF. However, a
general trend can be inferred from the figure, which

is representative of the behavior of most of the out-
put scalars in the problem. Such a data set is said
to be ill-conditioned for ANN training process, and
demonstrates the complexity involved in simulating
finite-rate chemistry effects using ANN.

After the ANN is incorporated into a real flame
chemistry problem, the predictions for the turbulent
premixed flame considered are compared with those
obtained by the direct integration (DI) approach for
the chemical evolution of the species. Figures 5(a-d)
show the instantaneous comparisons for some of the
major and minor species (CH*, CO, NO) and tem-
perature, respectively, in the flame normal direction
for the Fl flame. As observed earlier, the flame struc-
ture in the thin-reaction zone is broadened due to the
interaction of eddies smaller than the flame thickness
with the flame. This feature is captures quite accu-
rately using both ISAT and ANN. As can be seen from
the figures, the ANN is able to sufficiently represent
the scalar evolution in the reacting system. The in-
ability of the ANN to accurately capture some of the
fine scale phenomena can be attributed to the inade-
quate representation of the composition space by the
initial training set and the highly skewed nature of the
output sample points. Work is currently underway to
optimize the results in this aspect.

Figures 6(a)-(d) show the average scalar profiles for
OH*, COz,CO and NO for the same flame. Figure
7 shows the average profiles for some of the radicals,
temperature and the reaction rate for CH^. Clearly,
although the ANN prediction follows the the variation
of all species quite closely, there are still some errors
in the overall "time-averaged" predictions. Analysis of
the ANN behavior suggests that this might be due to
the rather rapid variation in a small range of some of
the key radicals in the flame zone. A new approach
which further fine-tunes the ANNs in these regime is
being developed to further optimize the prediction.

Prediction of the average species profiles using the
ANN approach for the Bl flame are shown (figure 8
and figure 9). Due to the flamelet shape of the Bl
flame, the training of ANN on this flame was found to
be more difficult and small errors in the prediction of
key radicals resulted in significant errors in the over-
all structure. Again, this suggests a fine-tuning of the
ANN within a subset of the composition where rapid
variations are occurring. A new approach which sub-
divides ANNs within a local composition space in now
being tested to address this concern.

An extension of this approach is to include an addi-
tional ANN that contains turbulence parameters such
as the subgrid intensity and range of turbulent eddies
in the flame zone (/(/)). For example, the Fl and
Bl flames have different u' and /(/) and by combining
ANNs for these flames with ANN for u' and /(/), it will
be possible to directly obtain the filtered reaction rates
without resorting to direct integration. This would
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allow inclusion of detailed kinetics into LES solvers
without the associated (enormous) increase in compu-
tational effort. Such a study is currently underway
and will be reported soon.

5 Error estimates and computational
issues for ANN

The neural network algorithm is allowed to converge
to a sufficient level of tolerance error. Mean square
errors are used to define the overall network errors be-
tween the desired target value and the ANN predicted
values. It is seen that convergence is more difficult
to achieve for some of the radicals than the major
species/temperature. Figure 10 shows the scatter plot
for the network error that is obtained for one of the
outputs in the Fl flame. As can be seen from the
figure, most of the error in the predictions is close to
the value of 0.0, which also happens to be the most
probable value in this case. This may be argued to
be one of the reasons for the slight offsets in the ANN
predictions. With this deviation in context, overall the
ANN proves to be an excellent competitor to represent
finite-rate chemistry in a turbulent flame simulation.
The major advantage it has to offer are in terms of
the reductions in the computational costs and memory
usage. Direct integration approaches are not always
feasible, due to the enormous computational costs in-
volved. For example, ISAT for the same chemical
mechanism requires around 100-200 MB which has to
be stored in memory to speed up access. On the other
hand, the present ANN model (using 20 ANNs, one
for each species and temperature) requires less than
1 MB of memory. This is significant implication for
use within massivelly parallel systems (especially PC
clusters) where the memory needs to be allocated to
resolve for the flow field rather than for the chemical
state.

Another issue is that ANN implementation is sim-
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Fig. 7 Averaged profiles for minor species, tem-
perature and C//4 reaction rate (Fl flame).

pie to incorporate as compared to an IS AT algorithm,
involving only a few matrix multiplications and addi-
tions and floating point operations. This can signifi-
cantly reduce not only the memory overheads but also
the overall cost of chemical composition update.

6 Conclusions
ISAT and ANN are both feasible and economical

approaches for the simulation of scalar evolutions in
a chemically reacting mixture. From a memory and
storage point of view, ANN may offer a better alter-
native when implementing LES on massivelly parallel
systems. The accuracy and ability of the network
depends significantly on the choice of the ANN pa-
rameters used and the quality of the input-output sets
used for the network training. The present predic-
tions for the species and temperature variations using
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ANN compare well with those obtained with the con-
ventional direct integration approach (using ISAT) for
the two particular flame regimes considered. Currently
work is underway to increase the accuracy of the neu-
ral nets obtained, for example, by choosing a better
training sample set which can represent the accessed
composition domain much better. Splitting the com-
position domains for each of the 20 ANNs on the basis
of temperature or any other parameters, is also cur-
rently being studied, and will be reported in the future.

Finally, the next step in the modelling of turbulent
combustion is the incorporation of the turbulence ef-
fects into the ANN structure, for example, the subgrid
velocity scale and the range and sizes of the eddies.
This will obviate the need to have an "on-line" LEM
subgrid simulation model4'6'7 and will allow predic-

25
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300

Fig. 10 Network error obtained for one of the re-
active scalars (H*). x-axis denotes the actual target
value, and y-axis shows the corresponding error in
the ANN estimate.

tion of the turbulent reaction rates using a simple
lookup model. Once this approach is validated it
is likely to prove a major development for the im-
plementation of turbulence-chemistry interactions in
realistic combustors without requiring significant com-
putational resources. Undoubtedly, this will involve
more complicated ANNs than being used at present.
However, preliminary studies show that this can be
accomplished within the framework of the subgrid sim-
ulation model. The development and implementation
of a "turbulent ANN" will be reported in the near fu-
ture.

7 Acknowledgments
This work was supported in part by the Wright

Patterson AFB under a subcontract from CFD Re-
search Corporation. Computational time was provided
by DOD High Performance Computing Centers at
NAVO (MS) under a WPAFB HPC Grand Challenge
Project.

References
1 Kirn, W., Menon, S., and Mongia, H., "Large Eddy

Simulations of a Gas Turbine Combustor Flow,"
Combustion Science and Technology, Vol. 143,
1999, pp. 25-62.

2 Kirn, W. W. and Menon, S,, "Numerical Model-
ing of Turbulent Premixed Flames in the Thin-
Reaction-Zones Regime," Combustion Science and
Technology, Vol. 160, 2000, pp. 119-149.

3 Menon, S., McMurtry, P., and Kerstein, A., "A
linear eddy mixing model for LES of turbulent com-
bustion," LES of Complex Engineering and Geo-
physical flows, edited by B. Galerpin and S. Orszag,
Cambridge Univ. Press, 1993, pp. 287-314.

8
American Institute of Aeronautics and Astronautics Paper 2001-3847



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

4 Menon, S. and Calhoon, \V., "Subgrid mixing and
molecular transport modeling for large-eddy simu-
lations of turbulent reacting flows," Proceedings of
the Combustion Institute, Vol. 26, 1996, pp. 59-66.

5 Menon, S. and Kim, W.-W., uHigh Reynolds Num-
ber Flow Simulations Using the Localized Dynamic
Subgrid-Scale Model," AIAA-96-0425, 1996.

6 Chakravarthy, V. and Menon, S., "Large-Eddy
simulations of turbulent premixed flames in the
flamelet regime,'' Combustion Science and Technol-
ogy, Vol. 162, 2001, pp. 175-222.

7 Chakravarthy, V. and Menon, S., "Subgrid Mod-
eling of Turbulent Premixed Flames in the
Flamelet Regime," Flow, Turbulence and Combus-
tion, Vol. 65, 2000, pp. 133-161.

8 Smith, T. and Menon, S., "Subgrid Combustion
Modeling for Premixed Turbulent Flows," AIAA
Paper No. 90-0242, 1998.

9 Calhoon, W. and Menon, S., "Linear Eddy Sub-
grid Modeling for Reacting Large Eddy Simulation:
Heat Release Effects," AIAA Paper No. 97-0368,
1997.

10 Sankaran, V. and Menon, S., "Structure of Pre-
mixed Turbulent Flames in the Thin-Reaction-
Zones Regime," Proceedings of the Combustion In-
stitute, Vol. 28, 2000, pp. 203-209.

11 Hay kin, S., "Neural Networks: A Comprehen-
sive foundation," Neural Networks: A Comprehen-
sive foundation, Prentice Hall, Hamilton, Ontario,
Canada, 1999, pp. 2-2.

12 Christo, F., Masri, A., Nebot, E., and Pope, S., "An
integrated PDF/Neural Network Approach for Sim-
ulating Turbulent Reacting Systems," Proceedings
of the Combustion Institute, Vol. 26, 1996, pp. 43-
48.

13 Christo, F., Masri, A., and Nebot, E., "Artificial
Neural Network Implementation of Chemistry with
pdf Simulation of H2/C02 Flames," Combustion
and Flame, Vol. 106, 1996, pp. 406-427.

14 Blasco, J., Fueyo, N., Dopazo, C., and Ballester, J.,
"Modelling the Temporal Evolution of a Reduced
Combustion Chemical System With an Artificial
Neural Network," Combustion and Flame, Vol. 113,
1998, pp. 38-52.

15 Chen, J., Blasco, J., Fueyo, N., and Dopazo, C.,
"An Economical Strategy for Storage of Chemi-
cal Kinetics : Fitting In Situ Adaptive Tabulation
with Artificial Neural Networks," Proceedings of the
Combustion Institute, Vol. 28, 2000, pp. 43-48.

16 Chen, J., Private Communication.
17 Chen, J., Chang, W., and Koszykowsky, M., "Nu-

merical Simulation and Scaling of NOX Emissions
from Turbulent Hydrogen Jet Flames with Various
Amounts of Helium Dilution," Combustion Science
and Technology, Vol. 110, 1995, pp. 505-529.

18 Pope, S., "Computationally Efficient Implementa-
tion of Combustion Chemistry Using In Situ Adap-
tive Tabulation," Combustion Theory Modelling,
Vol. 1, 1997, pp. 41-63.

19 Zaniolo, C. e., Advanced Database Systems, Morgan
Kauffman Publisher, 1997, pp. 271-274.

20 Beale, M. and Demuth, H., "Neural Network Tool-
box," Neural Network Toolbox, The Math Works,
Inc., Natick, MA, 1998, p. 5.25.

American Institute of Aeronautics and Astronautics Paper 2001-3847


